skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pastick, N J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gelisols (permafrost‐affected soils in US Soil Taxonomy) are extensive in Alaska, currently occurring on ∼45% of the land area of the state. Gelisol taxonomic criteria rely on the presence of near‐surface (less than 2 m deep) permafrost, but ongoing climatic and environmental change has the potential to affect the presence of near‐surface permafrost across much of Alaska throughout the 21st century. In this study, we utilized scenarios of near‐surface permafrost loss and active layer deepening through the 21st century under low (SRES B1, RCP 4.5), mid‐ (SRES A1B), and high (SRES A2, RCP 8.5) emissions scenarios, in conjunction with the statewide STATSGO soil map, to generate spatially explicit predictions of the susceptibility of Gelisols and Gelisol suborders to taxonomic change in Alaska. We find that 15%–53% of Alaskan Gelisols are susceptible to taxonomic change by mid‐century and that 41%–69% of Alaskan Gelisols are susceptible to taxonomic change by the end of the century. The extent of potential change varies between suborders and geographic regions, with Gelisols in Northern Alaska being the most resilient to taxonomic change and Western and Interior Alaskan Gelisols most susceptible to taxonomic change. The Orthel suborder is likely to be highly restricted by the late 21st century, while Histels and Tubels are more likely to be of greater extent. These results should be taken into consideration when designing initial survey and re‐mapping efforts in Alaska and suggest that Alaskan Gelisol taxa should be considered threatened soil taxa due to the proportional extent of likely loss. 
    more » « less
  2. Abstract Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1summer, 150–180 mg m−2 d−1winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21stand 22ndcenturies. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma. 
    more » « less
  3. Abstract Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms. 
    more » « less
  4. Abstract Warming temperatures and increasing disturbance by wildfire and extreme weather events is driving permafrost change across northern latitudes. The state of permafrost varies widely in space and time, depending on landscape, climate, hydrologic, and ecological factors. Despite its importance, few approaches commonly measure and monitor the changes in deep (>1 m) permafrost conditions with high spatial resolution. Here, we use electrical resistivity tomography surveys along two transects in interior Alaska previously disturbed by wildfire and more recently by warming temperatures and extreme precipitation. Long‐term point observations of permafrost depth, temperature, and water content inform geophysical measurements which, in turn, are used to extrapolate interpretations over larger areas and with high spatial fidelity. We contrast gradual loss of recently formed permafrost driven by warmer temperatures and increased snowfall, with rapid permafrost loss driven by changes in air temperature, snow depth, and extreme summer precipitation in 2014. 
    more » « less